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Abstract
A diagrammatic method for the theory of magnetic and resistive properties
of manganites has been applied. The Holstein double-exchange model for a
narrow band with the strong Hund’s rule coupling was studied. In parallel
with the Lang–Firsov unitary transformation of the zeroth Hamiltonian, we have
realized the diagonalization of Hund’s Hamiltonian neglecting the upper triplet.
The diagram techniques taking into account the quantum spin fluctuations of
the lower quintet and hole state with spin S = 3/2 were developed. The
magnetic structure of the ground state and an influence of electron–phonon
interaction have been analysed using the first nonvanishing approximation
of the perturbation theory. Since a simple self-consistent equation for the
Green function is lacking, the approximations for the effective interaction
line with strong electron–phonon coupling were used. The influences of
quantum fluctuations and electron–phonon interactions on magnetization, the
Curie temperature and resistivity were investigated. The calculated temperature
dependence of resistivity in the pure double-exchange model agrees well with
experimental data.

1. Introduction

An investigation of the thermodynamics of the double-exchange (DE) model is urgently
required because a theory taking into account the quantum nature of electron and ion spins
sequentially is still lacking. In manganites with dominant DE and strong electron correlations,
strong Hund’s rule coupling of the collective eg electron with the Mn4+ ion spin should be
considered. This essentially extends the wavefunction basis used and creates some difficulties
in the construction of diagram techniques. Anderson and Hasegawa [1] have calculated the
spectrum of electron excitation exactly in a system of two multivalent ions Mn3+ and Mn4+.
De Gennes [2] has studied the thermodynamics of this system for a system of classical spins
neglecting strong electron correlations. Kubo and Ohata [3] have proposed an exact projective
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transformation of the Hamiltonian with Hund’s rule coupling. Unfortunately, because of the
complicated dependence of this transformation on the charge and spin degrees of freedom the
description of the thermodynamics was possible only in the low-temperature approximation. In
the dynamic mean field approximation (DMF), the spins are, as rule, classical [4]. Moreover,
the account of kinematic electron contribution presupposes both an infinite space dimension and
Dyson’s method of diagram summation. In the coherent potential approximation (CPA) [5, 6]
the nonzero value of the imaginary part of the Green function on the Fermi level was obtained
and the sum rule for spectral density did not hold. One can suppose that evidently the
contribution of charge and spin fluctuations was overestimated.

In this paper, the Hamiltonian investigated includes the strong Hund’s rule coupling
of localized t2g electrons of the Mn3+ ion with eg electrons, superexchange of localized
spins, electron–phonon interactions as well as the contributions from phonon subsystem and
interaction with the applied magnetic field, h. In the diagrammatic method used the effective
self-consistent field is extracted.

The thermodynamics of the DE model with account taken of Hund’s rule coupling in the
mean field approximation has been previously considered in papers [7–9]. All contributions
to the total Green functions in the first nonvanishing approximation with respect to the inverse
effective radius of interaction r ∼ 1/z, where z is the number of nearest neighbour in the
simple cubic (s.c.) lattice, were determined.

It should be emphasized that up to now the quantum fluctuations in the effective field theory
as applied to manganites have not been taken into account. We have considered all quantum
states corresponding to the lower quintet of the zeroth Hund’s Hamiltonian, neglecting the
influence of the upper triplet. It is valid in the limit of infinite Hund’s rule coupling JH.

The unperturbed Hamiltonian includes the additive part involving the chemical potential
and Hund’s exchange. In this theory, the Hamiltonian V describing the kinetic electron energy
is a perturbation. We suppose that in the system studied the strong electron correlations are
realized, and then one can neglect the states with twofold site filling. In a weakly doped electron
subsystem with electron concentration n ∼ 1, the Fermi level lies near the top of the valence
band. Then the chemical potential µ is proportional to W , where W is the bandwidth. In
this case, the zeroth Hamiltonian, Ĥ0, meets the necessary criteria of the perturbation theory,
Ĥ0 � V .

The outline of paper is as follows. In section 2 we write the total Hamiltonian Ĥ of the
Holstein DE model and the diagonalization of unperturbed Hamiltonian Ĥ0 is made. Also, we
give the unitary transformation of all operators in Hamiltonian Ĥ . To build the diagrammatic
techniques, section 3 presents the main steps including the determination of the free-particle
Green functions and rules for pairings in accordance with Wick’s theorem. In section 4 the
approximate expression for the effective line of interactions is considered. The set of equations
for magnetization and chemical potential is derived in section 5. In section 6 we study the
spectral and transport properties of this model. The main conclusions are summarized in
section 7.

2. The Hamiltonian of the system

In the DE model with electron–phonon interactions the Hamiltonian of the system takes the
form

Ĥ = Ĥf + Ĥb, (1)

where the Fermi part, Ĥf, is expressed as follows:

Ĥf = −
∑

i

JHSiσ i −
∑

i, j

Ji j(Si + σ i)(S j + σ j )− h
∑

i

(Sz
i + σ z

i )− µ
∑

i

ni + V . (2)
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The Bohr magneton, µB, and g̃-factor were taken in a unit system with µB g̃ = 1. In
Hamiltonian (2) the first and second terms describe the Hund’s rule coupling and indirect
exchange interaction of eg and tg electrons, respectively. The next two terms include the
interaction of spins with applied magnetic field h and energy of chemical potential µ. For
eg and tg electrons we can consider the strong one-site Coulomb interaction U � W and the
kinetic energy of intersite motion. Then we obtain the Heisenberg Hamiltonian in the form
similar to the second term of Hamiltonian (2). To have the correct limit when the concentration
of eg electrons n → 1 corresponding to pure LaMnO3, the indirect exchange must also be
expressed as in (2).

The perturbation Hamiltonian may be written as

V̂ =
∑

i, j,σ

ti j c
†
σ i cσ j , (3)

where c†
σ i (cσ i ) creates (annihilates) an electron of spin σ on lattice site i . This model neglects

the eg orbital degeneracy. The latter plays an important role in both the treatment of the Jahn–
Teller effect and the orbital ordering. In LaMnO3 the eg bands are split with a gap of order
0.1 eV [10]. Apparently the influence of the upper eg band is insignificant in the dielectric state
at temperatures T < 500 K. The boson part of Hamiltonian (1) has a form similar to that used
in the theory of a small polaron:

Ĥb = −g
∑

i

ni (b
†
i + bi)+ ω0

∑

i

b†
i bi , (4)

where g is the electron–phonon coupling strength, and b†
i and bi are the phonon creation

and annihilation operators. In the Einstein model the phonon frequency ω0 is assumed to be
dispersion-free.

In the theory proposed, the following relation of parameters, JH � ti j ∼ g � |Ji j | ∼ h,
was used. At first glance the operator V is not the perturbation. However, as will be seen in
our further consideration, the hopping integral ti j enters into the expression for the chemical
potential µ which is proportional to the bandwidth W = 2zt , where t is the nearest-neighbour
hopping integral. The zeroth Hamiltonian contains only a part of V , which does not depend on
the free carrier concentration. The perturbation near the band half-filling is proportional to the
hole concentration, since the electron jumps at n = 1 are forbidden for this strongly correlated
system. The foregoing provides the basis for the construction of perturbation theory at n ∼ 1
with the results correct to within 1/z.

The electron–phonon interactions in manganites were first taken into account in [11],
assuming the phonon to be a classical localized oscillator. The main conclusion obtained is that
in La1−x SrxMnO3 the pure DE model is usable, while in La1−x Cax MnO3 the strong electron–
phonon interaction plays an essential role.

In the following, the part of Hamiltonian (2) connected with superexchange interaction
is considered in the mean-field approximation. We will carry out the unitary transformation
Ũ = exp(S̃) of Hamiltonian (1) resulting in the separation of the fermion and boson operators
from each other. The expression for S̃ given by Lang and Firsov [12] has the following form:

S̃ = − gn

ω0

∑

i

(b†
i − bi ). (5)

The shift of Bose

b̃ = b + gn

ω0
(6)

and multiplying Fermi operators

c̃σ = Y cσ , (7)
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where Y = eλ(b
†−b) is connected exceptionally with the phonon degree of freedom, λ = g/ω0,

results from the transformation S̃. The Hermitian conjugate of equation (7) is an expression
for the creation operator. Substituting the transformed operators in equation (1) we obtain the
following zeroth Hamiltonian for the fermion subsystem:

ˆ̃H 0 f =
∑

i

JHSiσ i − 2J (0)
∑

i j

(Si + σ i)(〈Sz
i 〉 + 〈σ z

i 〉)

− µ
∑

i

ni − h
∑

i

(Sz
i + σ z

i )− ξ
∑

i

n2
i , (8)

where J (0) = z J in the nearest-neighbour approximation, ξ = g2/ω0 is the polaron binding
energy, and ni the number of eg electrons on the i th site. The boson part has the form

Ĥ0b = ω0

∑

i

b†
i bi . (9)

The Hamiltonian of interaction V as a function of cσ and c†
σ is expressed in terms of operators

c̃σ and c̃†
σ , respectively.

We will consider the transformed Hamiltonian (1) where the sign of tilde was omitted.
Preliminarily we should carry out a diagonalization of Hamiltonian (8) for the Fermi subsystem.
The main difficulty is associated with the first term describing Hund’s rule coupling between
the ion core and the mobile electron. The total basis of the zeroth Fermi Hamiltonian (8)
includes 12 spin wavefunctions supposing that the Mn4+ ion spin S = 3/2 and the eg electron
spin σ = 1/2. At h = 0, in the Hund part of equation (8) the eight spin functions correspond
to five- and three-fold degenerated levels of E0

H = − 1
2 S JH and E2

H = 1
2 (S + 1)JH with S2 = 2

and S1 = 1 spins, respectively. Spin S = 3/2 corresponds to a hole state (Mn4+ ion) with
the four-fold degenerated energy level of E1

H = 0. The wavefunctions for the above multiplets
are [13]

|(3/2, 1/2)S′m〉 = |ϕS′m〉 =
∑

m1m2

C3/2 1/2 S′
m1m2m |2m1, 2m2〉, (10)

where |2m1, 2m2〉 = |3/2,m1〉⊗ |1/2,m2〉, C3/2 1/2 S′
m1m2m are the Clebsch–Gordan coefficients. In

equation (10), at first, m2 and then m1 change from maximum to minimum values. Setting such
numeration order the vectors |2m1, 2m2〉 can convert to |ψi 〉, where the index i = 1, 2 · · · 12.
The first five vectors correspond to the quintet E0

H, the next three vectors belong to the triplet
E2

H with electron spin being antiparallel to ion spin, and the last four vectors describe the hole
state E1

H with spin S = 3/2.
Let us introduce the Hubbard operators Xik = |ψi 〉〈ψk |. Then the matrix Ĉ of Clebsch–

Gordan coefficients in equation (10) may be presented as

Ĉ = X1,1 + X5,8 + X9,9 + X10,10 + X11,11 + X12,12 + 1
2 (X

2,2 + X4,7 − X6,3 + X8,6)

+
√

3

2
(X2,3 + X4,6 + X6,2 − X8,7)+ 1√

2
(X3,4 + X3,5 + X7,4 − X7,5). (11)

The vector system can be written as

|ψi 〉 : |3, 1〉, |3,−1〉, |1, 1〉, |1,−1〉, |−1, 1〉, |−1,−1〉, |−3, 1〉, |−3,−1〉,
where i = 1, 2 . . . 8, for electron states, and |ψi〉 : |3, 0〉, |1, 0〉, |−1, 0〉, |−3, 0〉, where
i = 9, 10, 11, 12 for hole states. The vectors |ψi〉 are connected with eigenfunctions |ϕi〉
of the Hund part in Hamiltonian (8) by the linear relation

|ϕk〉 =
∑

i

Cki |ψi 〉, (12)

where the coefficient Cki forms a matrix Ĉ in equation (11).
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Using the function |ϕk〉, the Hamiltonians (2) and (3) will be transformed. In equation (2),
superexchange interaction includes the z-projection of the total spin operator. Then in |ϕk〉
basis, the latter will be presented as a direct sum of diagonal operators Sz ⊕ Sz

1 ⊕ Sz
2 for spins

S = 3/2, S1 = 1 and S2 = 2 [13], respectively. Having constructed a system of Hubbard
operators Lik = |ϕi〉〈ϕk |, one can write the unitary transformed zeroth Hamiltonian in the
diagonal form:

ˆ̃H 0 =
N∑

i=1

{ 5∑

l=1

εl L
ll
i +

12∑

l=9

εl L
ll
i

}
, (13)

where H̃ = h + 2J (0) (〈Sz〉 + 〈σ z〉) is the sum of the applied magnetic and effective Weiss
fields, εl = − 1

2 S JH − µ − ξ − (2S − l)H̃ for the state with spin S2 = 2 (l � 5) and

εl = −(S + 9 − l)H̃ for the hole state with S = 3/2 (l � 9). At the same time we have taken
into account that JH � t � J . Therefore the triplet level with S1 = 1 lies considerably above
the state with S2 = 2, and can be neglected. We also ignore the contribution of the chemical
potential −µ(L6,6 + L7,7 + L8,8). The above statements can be more strictly proved with the
introduction of the projective operator

P =
5∑

α=1

Lαα +
12∑

α=9

Lαα. (14)

The P operator acting upon both the Hamiltonian (1) and wavefunctions to an accuracy of t/JH

eliminates all states with numbers α = 6, 7 and 8.
The operator A in matrix form can be presented as

A =
∑

lm

〈l|A|m〉Xlm .

One can write the following expressions for the electron creation operators:

c†
↑ = X1,9 + X3,10 + X5,11 + X7,12

c†
↓ = X2,9 + X4,10 + X6,11 + X8,12.

(15)

The corresponding formulae for the electron annihilation operators can be obtained using the
Hermitian conjugate of equation (15). The Hubbard operators Xik and Llm are related to each
other by unitary transformation:

Xik =
∑

lm

C∗
li Cmk Llm , (16)

where the coefficients are determined by the matrix Ĉ from equation (11). Substituting (16)
in (15) we find the expressions for the unitary transformed c̃†

↑ and c̃↑ operators as functions

of Llm . An explicit form of both c†
↑ and c↑ operators and electron and ion spin operators is

given in the appendix. The operator of the electron number, n, is invariant relative to unitary
transformation (12).

3. Fermion–boson free-particle Green function and effective kinematic interaction

In the investigation of electron dynamics we have used the Matsubara Green functions:

Gσ (τ, rl − rm) = −〈Tτ clσ (τ )c
†
mσ (0)〉, (17)

where Tτ is the chronological ordering operator. The operators c†
↑ and c↑ are expressed in the

Heisenberg representation. The brackets 〈· · ·〉 mean that the Gibbs thermodynamic average is
obtained using the total Hamiltonian (1).
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The problem of finding the Green functions reduces to the calculation of various correlators
appearing in the scattering matrix series expansion of perturbation theory with Hamiltonian V
in interaction representation. Wick’s theorem [14, 15] for the Hubbard operators is used for
the unlinking of correlators, and then the task reduces to the calculation of elementary Green
functions. Every contribution of the perturbation theory has its graphical form. In accordance
with equation (7) the free-particle Green functions U(τ, εlm) are determined as follows:

U(τ, εlm) = −〈TτY (τ )Y (0)〉0ph〈Tτ Ll,m(τ )Lm,l(0)〉0
1

〈Fl,m〉0
, (18)

where 〈Fl,m〉0 = 〈Ll,l + Lm,m〉0, εlm = εl − εm . The thermal averages of the first and second
correlators in equation (18) are calculated with Hamiltonians (9) and (13), respectively. The
Fermi part of equation (18) is easily derived using Wick’s theorem:

Glm
0el(τ ) = 〈Tτ Ll,m(τ )Lm,l(0)〉0

(−1)

〈Fl,m〉0
= eεlm τ ·

{
− f (εlm), τ > 0

1 − f (εlm), τ < 0,

where f (x) = 1/(eβx + 1) is the Fermi distribution function, and 1/β = T the temperature.
The Bose part of equation (18) may be determined using both the relation for boson

operators b+ and b, eλ(b
†−b) = e− 1

2 λ
2
eλb†

e−λb, and the Feynman disentangling of the operator
products. The detailed calculation is given in [16].

As is seen in equation (18), the Bose part has the form of Gph
0 (τ ) = 〈TτY (τ )Y (0)〉0ph =

e�(τ), where

�(τ) = −λ2

{
2B + 1 − 2

√
B(B + 1) cosh

[
ω0

(
τ ∓ β

2

)]}

and the upper minus and the lower plus signs correspond to τ > 0 and τ < 0, respectively.
B = 1/(eβω0 − 1) is the Bose distribution function for the Einstein phonon mode. The
appearance of the hyperbolic cosine instead of the ordinary cosine, as in [16], is because in
Matsubara’s formalism the time t is imaginary, and therefore we must make the substitution
t → it . It is interesting to point out that the function Gph

0 (τ ) describes nondiagonal
transitions by the Holstein definition [17], which are responsible for a number of phonons
changing in the hopping process. In the function Gph

0 (τ ), the time-independent Debye–Waller
factor e−λ2(2B+1) corresponds to diagonal transitions with no changes in the number of virtual
phonons.

The Fourier transformation of the single-particle Green function has the form
U(iωn, εlm) = 1

2β

∫ β
−β U(τ, εlm)eiωnτ dτ . It is easy to write the following relation:

ex cosh(z) =
∞∑

k=−∞
Ik(x)e

kz,

where the Ik(x) are the Bessel functions of the complex argument. Note that in an initial
time space we have a simple product of single-particle Green functions of Fermi and Bose
subsystems. In Fourier inverse space this relation is complicated:

U(iωn, εlm) = 1

β
f (εlm)e

−λ2(2B+1)
+∞∑

k=−∞
Ik

(
2λ2

√
B(B + 1)

)eβεlm+ 1
2βkω0 + e− 1

2 βkω0

iωn + kω0 + εlm
, (19)
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where ωn = π(2n + 1)β and a unit system was taken for kB = h̄ = 1. Since the operators c±
σ

and Ll,m are linearly connected (see equation (A.1) in the appendix) one can write the single-
particle Green function as a linear combination of functions U(iωn, εlm):

G̃0σ (iωn) = −
{(
δ j,0 + δ j,1

4

)
〈F9,1+ j 〉0U(iωn, ε9,1+ j)+ 3 − j

4
〈F10,2+ j 〉0U(iωn, ε10,2+ j)

+ 2 + j

4
〈F11,3+ j〉0U(iωn, ε11,3+ j)

+
(
δ j,0

4
+ δ j,1

)
〈F12,4+ j 〉0U(iωn, ε12,4+ j)

}
, (20)

where the index j = 0 for σ = +1 (spin up) and j = 1 for σ = −1 (spin down) and δi, j

is the Kronecker symbol. The identities ε9,1 = ε10,2 = ε11,3 = ε12,4 = µ̃ + 1
2 H̃ = ε0↑ and

ε9,2 = ε10,3 = ε11,4 = ε12,5 = µ̃ − 1
2 H̃ = ε0↓ are valid, where µ̃ = µ + ξ + 1

2 S JH. Here
the change of electron energy with spin σ transferring from site to site is denoted by ε0σ . Then
expression (20) is simplified and takes the form

G̃0σ (iωn) = 〈Fσ0〉0G0σ (iωn) = 〈Fσ0〉0U(iωn, ε0σ ), (21)

where a combined occupancy of electron–hole states 〈Fσ0〉0 in the mean-field approximation
is defined as

〈F+0(ε1, ε2, ε3, ε4, ε5, ε9, ε10, ε11, ε12)〉0 = 〈F9,1〉0 + 3
4 〈F10,2〉0 + 1

2 〈F11,3〉0 + 1
4 〈F12,4〉0

〈F−0(ε1, ε2, ε3, ε4, ε5, ε9, ε10, ε11, ε12)〉0 = 1
4 〈F9,2〉0 + 1

2 〈F10,3〉0 + 3
4 〈F11,4〉0 + 〈F12,5〉0.

(22)

For the sake of convenience we have written 〈Fσ0〉0 as a function of all energy parameters εl . It
can be shown that expression (21) coincides with the unperturbed Green function given in [6].
The equality

Fσ0 = nσ + pσ , (23)

where nσ and pσ are the operators of number of electrons and holes with spin σ expressed in
terms of Llm (see the appendix), will be further used. Using the equalities of ((A.2)–(A.4)) in
the appendix, equation (23) can be written as

〈Fσ0〉 = 1
8 (5 − n)+ σ 〈σ z + 1

4 Sz
0〉, (24)

where Sz
0 = 3

2 (L
9,9 − L12,12) + 1

2 (L
10,10 − L11,11) is the z-projection of spin in basis of t2g

electrons as in the Mn4+ ion. It is easy to check that the expectations of operators 〈σ z + 1
4 Sz

0〉
and 1

4 〈σ z + Sz〉 are equal (see the appendix). Thus, a quarter of the Mn4+ ion spin fluctuates
with the electron spins. The reason is that the Mn4+ ion spins are coupled to the spins of an
itinerant eg-electron not only by Hund’s exchange but by effective kinematic interaction as well.
This point of view will be confirmed in the following discussion.

We will formulate some rules to find the contributions of a series of perturbation
theory in both Green function and combined occupancies using a graphic representation. In
figures 1 and 2, the electron Green functions G0σ (iωn), G+−(iωn) = U(iωn, ε↑↓) and Fourier
components of the interaction

t (q) =
∑

i j

ti j e
−iq(ri −r j ) = 2t (cos(qxa)+ cos(qya)+ cos(qza)),

where ε↑↓ = ε0↓ − ε0↑ and a is the constant of the s.c. lattice, are presented by solid, dashed
and wavelines, respectively.
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= +

Figure 1. Graphic equation for effective kinematic interaction.

Using Wick’s theorem one can write all possible pairings realized in the framework of this
consideration. The cσ operators and new Bose operator B+ = σ+ + 1

2 S+
0 are ‘active’ operators

where

S+
0 =

√
3

2
(L9,10 + L11,12)+ L10,11,

σ+ = 1

2
(L1,2 + L4,5)+

√
3

8
(L2,3 + L3,4).

The operators B− and σ− appear due to the Hermitian conjugate of B+ and σ+ operators,
respectively (B− = (B+)+, σ− = (σ+)+). We have the following zero pairings:

(nσ i + pσ i) cσ j
←−

= cσ1i cσ2 j
←−

= c†
σ1i c†

σ2i
←−

= Bσ
i cσ̄ j

←−
= 0. (25)

Here i and j site symbols mean the time indices in the interaction representation. In pairings
the arrows are directed from ‘active’ to ‘passive’ operators. The remaining nonzero pairings
have the form

(nσ i + pσ i) cσ̄ j
←−

= 1
4δi j G0σ̄ (τ j − τi)cσ̄ i , c†

σ i cσ̄ j
←−

= δi j G0σ̄ (τ j − τi )B
σ
i

Bσ
i cσ j

←−
= − 1

4δi j G0σ (τ j − τi)cσ̄ i ,

(
σ z

i + 1

4
Sz

0i

)
cσ j
←−

= −σ
8
δi j G0σ (τ j − τi)cσ i

(nσ i + pσ i) B+
j

←−
= σ

4
δi j G+−(τ j − τi)B

+
i , B−

i B+
j

←−
= − 1

2δi j G+−(τ j − τi)
(
σ z

i + 1
4 Sz

0i

)
.

(26)

The presented expressions are closed and allow us to find the contribution of a series of
perturbation theory using only three single-particle Green functions in spite of the existence of
a large number of Hubbard operators Lik . This result is important and essentially simplifies the
construction of diagram techniques in the DE model with a strong Hund’s rule coupling.

Let us find an analytic expression for the effective kinematic interactions βBc†
σ cσ (q, iωn)

displayed by the bold line in figure 1. This expression may be written as

βBc†
σ cσ (q, iωn) = βt (q)

1 − βt (q)G0σ (iωn)〈Fσ0〉 . (27)
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+--=<F >
0

+ + -

- -

1) 2)

3) 4)

5) 6)

a)

b)

Figure 2. Graphic image of the equation for combined occupancy 〈Fσ0〉 (a) and diagrams for the
Green function in the first approximation of the perturbation theory (b).

In the absence of electron–phonon interaction the calculation of diagrams presents no
problems [8]. In this case, equation (27) has the simplest form:

βBc†
σ cσ (q, iωn) = βt (q)(iωn + ε0σ )

iωn − Eσq
, (28)

where Eσq = −ε0σ + t (q)〈Fσ0〉.
If equation (28) contains one pole, the infinite quantity of poles in equation (27) are the

solutions of an algebraic equation of infinite order. As a consequence, there is an unlimited
quantum number of phonons. With the aim of practical use, equation (27) should be simplified.

4. Electron–phonon interaction

In the CPA method [6] the polaron problem is considerably simplified after analytic
continuation iωn → ω + iδ and use of a self-consistent equation for the total Green function
Gσ (ω, 0) = U(ω− W 2

16 Gσ (ω, 0), ε0σ ). Writing Gσ (ω, 0) as a sum of real and imaginary parts,
it is easy to solve the derived set of equations by a simple iteration method.

Let us consider the next approximations in solving equation (27) for frequency poles. The
equation of pole singularities for the effective kinematic interaction (27) is written in the form

∏

m

(x + mω0)− t (q)〈Fσ0〉Pσ
∑

m

ϕmσ

∏

k( �=m)

(x + kω0) = 0, (29)

where

x = iωn + ε0σ Pσ = f (ε0σ )e
−λ2(2B+1),

ϕmσ = Im
(
2λ2

√
B(B + 1)

)(
eβ[ε0σ+ 1

2 mω0] + e− 1
2 βmω0

)
.
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The second term in equation (29) is considered as a perturbation. It is correct in the limit
of strong electron–phonon coupling, when Pσ ϕmσ � 1. In the case of g = 0, using
equation (29) we obtain the solution corresponding to the DE model. In equation (29) the term
with m = 0 corresponds to the central polaron band. Expressing the nth root of equation (29)
as x = xn + �n, where xn = −nω0 is the root in the absence of perturbation, it is easy to
calculate a correction to the nth pole in the linear approximation relative to the smallness of the
Pσ ϕmσ parameter:

�n = t (q)〈Fσ0〉Pσ ϕnσ . (30)

Then one can write equation (27) accurate to t (q)2 as

βBc†
σ cσ (q, iωn) = βt (q)

∏

m

iωn + ε0σ + mω0

(iωn − Emσq)

≈ βt (q)
{

1 + t (q)〈Fσ0〉Pσ
∞∑

m=−∞

ϕmσ

iωn − Emσq

}
(31)

where Emσq = −ε0σ − mω0 + t (q)〈Fσ0〉Pσ ϕmσ .

5. The analysis of magnetic structure

Using the approximations (31) for the effective kinematic interaction, we will write the system
of equations determining the chemical potential and mean spin of the system. The graphic
image of a series expansion for combined occupancies 〈Fσ0〉 is presented in figure 2(a). A
small circle ◦ corresponds to 〈Fσ0

i 〉0 of the i th site. The lower index for 〈Fσ0
i 〉0 denotes the

averaging over Hamiltonian ˆ̃H 0 (equation (13)) with the parametric part tending to zero:

Ĥ0(r↑, r↓) = ˆ̃H 0 +
N∑

i

(r↑i F+0
i + r↓i F−0

i ). (32)

The dots connecting the diagram blocks (figure 2) mean the equality of their external site
indices. According to the linked cluster theorem such diagrams characterize the contributions
to both combined occupancies and Green function. The form of the zeroth Hamiltonian (32) is
very suitable for calculation of the operator average:

〈Fσ0
i 〉0 = ∂

∂(−βrσ i)
ln Tr(exp(−β Ĥ0(r↑, r↓))) = ∂σ ln Z0(r↑, r↓). (33)

In figure 2 the blocks and are described by the functions βδµσ and

ν−σ 〈F−σ0〉:
δµσ = 1

N

∑

q

t (q)Pσ
∞∑

m=−∞
ϕmσ f (Emσq)

νσ 〈Fσ0〉 = 1

N

∑

q

Pσ
∞∑

m=−∞
ϕmσ ( f (Emσq)− f (−mω0 − ε0σ )).

(34)

In the sums of equation (34) the m1 and m2 indices were taken equal to m, since otherwise
the corresponding series terms are proportional to a high-order power of the parameter Pσ ϕmσ .

In figure 2(a), graphic series may be easily summed, since all terms of the sum with the
exception of the last one ν−σ 〈F−σ0〉 generate the Taylor power series

〈Fσ0〉0 − ∂σ 〈Fσ0〉0βδµσ − ∂−σ 〈F−σ0〉0βδµ−σ

+ 1

2!∂
2
σ 〈Fσ0〉0 (βδµσ )

2 + 1

2!∂
2
−σ 〈F−σ0〉0 (βδµ−σ )2 − · · · ,
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Figure 3. I (x) and E(x) functions.

the sum of which is equal to 〈Fσ0〉1:

〈Fσ0〉1 = 〈Fσ0(ε̃1, ε̃2, ε̃3, ε̃4, ε̃5, ε̃9, ε̃10, ε̃11, ε̃12)〉0. (35)

The function 〈Fσ0(ε1, ε2, ε3, ε4, ε5, ε9, ε10, ε11, ε12)〉0 is determined by equation (22) and

ε̃1 = ε1 + δµ↑, ε̃2 = ε2 + 3
4δµ↑ + 1

4δµ↓,

ε̃3 = ε2 + 1
2

(
δµ↑ + δµ↓

)
, ε̃4 = ε4 + 1

4δµ↑ + 3
4δµ↓,

ε̃5 = ε5 + δµ↓, ε̃9 = ε9 + δµ↑ + 1
4δµ↓,

ε̃10 = ε10 + 3
4δµ↑ + 1

2δµ↓, ε̃11 = ε11 + 1
2δµ↑ + 3

4δµ↓,

ε̃12 = ε12 + 1
4δµ↑ + δµ↓.

Equations for the mean spin 〈σ z + 1
4 Sz

0〉 as well as for the chemical potential µ can be written
in the following form:

1
8 (5 − n)+ 〈σ z + 1

4 Sz
0〉 = 〈F+0〉1 − ν↓ 〈F−0〉

1
8 (5 − n)− 〈σ z + 1

4 Sz
0〉 = 〈F−0〉1 − ν↑ 〈F+0〉. (36)

We will consider the different solutions of the set of equations (36). Supposing that ξ = 0,
T = 0 (pure double exchange) andµ > 0, we introduce the functions E(x) = 1

6

∫ x
−3 Dc(y)y dy

and I (x) = ∫ x
−3 Dc(y) dy, where the electron density of states may be written as

Dc(x) = 1

N

∑

q

δ

(
x − t (q)

2t

)
. (37)

Here δ(x) is the Dirac delta function. From equation (37) it follows that for a simple
cubic (s.c.) lattice the variable |x | � 3. The plots of I (x) and E(x) functions for this lattice
are displayed in figure 3. Function E(x) characterizes an effective field contribution to the
electron dynamics which does not exceed 1/(2z). This contribution roughly determines the
Curie temperature, TC, in units of the bandwidth W .

For the case of 〈F+0〉1 = 1, 〈F−0〉1 = 0, the set of equations (36) can be written as

〈Fσ0〉 = 〈Fσ0〉1 + 1

4

[
1 − I

(
6µ

W 〈F−σ0〉
)]
, (38)
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Figure 4. The Curie temperature, TC, versus electron concentration, n, with account of Hund’s
rule coupling in the framework of given theory (curve 1), and in the mean-field approximation [9]
(curve 2). Curve (3) corresponds to an approximate solution of the set of equations (41).

which have solutions if
6µ

W 〈F−0〉 � 3. (39)

Then the expressions for both the mean spin of a saturated ferromagnet (FM) and the chemical
potential have the form 〈σ z + 1

4 Sz
0〉 = 1

8 (3 + n) and µ̃

W = 1
6 I −1(n), respectively, where I −1(x)

is the inverse function of I (x). In figure 3 it is seen that I −1(x) > 0 for x > 0.5. Therefore,
the self-consistent FM solution is valid for electron concentrations n > 1/2. In perovskite
manganites this fact was fixed experimentally in [18]. Using equation (39) we obtain a more
precise estimation of electron concentration, namely, nFM ≈ 0.588, above which the FM state
exists.

The set of equations (36) has solutions 〈σ z + 1
4 Sz

0〉 = 0, µ̃ = µ̃PM2 = W
48 (5 − n)I −1( n+1

2 )

and µ̃ = µ̃PM1 = W
48 (5 − n)I −1( n

2 ), corresponding to two paramagnetic phases PM-2 and
PM-1. In these phases 〈Fσ0〉1 = 1/2, µ̃ + δµσ /4 > 0 and 〈Fσ0〉1 = 5/8, µ̃ + δµσ/4 < 0,
respectively. The existence of two paramagnetic phases was also predicted in [8] for high-
temperature superconducting systems.

To find the temperature TC the set of equations in the linear approximation is expanded in
terms of the small parameter 〈σ z + 1

4 Sz
0〉 at T ∼ TC. Neglecting superexchange and supposing

ξ = 0 (pure DE model) we obtain the following equations for µ and TC:

1 − n = 1

1 + 5
4 eβC (µ̃+ 1

4 δµ)
− 2

N

∑

q

f (E0q)+ 2 f (−µ̃)

4T 2
C = 1

N

∑

q

t (q) f (E0q)[1 − f (E0q)]
{

5t (q)
eβC (µ̃+ 1

4 δµ) + 1
2

5eβC (µ̃+ 1
4 δµ) + 4

− TC

}
,

(40)

where βC = 1/TC, δµ = 1
N

∑
q t (q) f (E0q), E0q = −µ̃+ 1

8 (5 − n)t (q).
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The results of TC(n) calculation in W units are shown in figure 4 (curve 1). The
dependence TC(n) obtained assuming that µ̃ = µ̃PM2 (see the above formula for the chemical
potential defined at T = 0) and d f (E0q)

dE0q
= −δ(E0q) has the form

TC/W ≈ 768(µ̃/W )2 Dc
( 48µ̃/W

5−n

)

[(5 − n)]3 + 384(5 − n)Dc
( 48µ̃/W

5−n

)
µ̃/W

. (41)

Formula (41) differs somewhat from the result obtained in [9], when the Hund’s rule coupling
was considered in the mean-field approximation (see curve 2 in figure 4). Curve 3 corresponds
to a solution of the set of equations (40). Therefore, one can note that a rigorous account of
quantum spin fluctuation decreases the Curie temperature significantly (up to 30%).

The above equations correspond to a pure DE model. There are no difficulties in the
derivation of similar formulae taking into account the strong electron–phonon coupling. As is
seen in the approximation (equation (34)) the strong influence of the polaron binding energy ξ
on the ferromagnetic phase is observed. The temperature dependences of mean spin obtained
solving the set of equations (36) at electron concentration n = 0.8 for various values of ξ are
illustrated in figure 5. Hereinafter the phonon frequency value ω0/W = 0.025 and the lattice
constant a = 5 Å were used. It is seen that the Curie temperature is reduced by more than
a half at ξ/W = 0.04. The chemical potential also decreases abruptly. This is indicative of
a narrowing effective band. The size of the polaron calculated using the Holstein expression
aW/ξ ≈ 25a is not small. Therefore, the electron–phonon interaction suppresses the DE
interaction, as predicted in [6, 11].

6. Spectral and transport properties of electron–hole excitations

In figure 2(b), all diagrams in the first order relative to the inverse effective radius of interaction
for the Green function Gσ (iωn,k) are shown. Diagrams 1, 2, 3 and those in a higher order of
expansion forming a series 〈Fσ0〉 are depicted in figure 2(a). Consequently, the appropriate
correction to Gσ (iωn,k) is equal to 〈Fσ0〉G0σ (iωn).

Let us write the analytic expressions for diagrams 4, 5 and 6 for strong electron–phonon
interaction:

�σ
4 (iωn) = σ

2N

∑

qm

t (q)P−σ ϕm−σ P0ϕ00

iωn − Em−σq + ε−σσ
{ f (Em−σq)+ b(ε−σσ )}

〈
σ z + 1

4
Sz

0

〉

0

�σ
5 = − 1

4βδµ−σ 〈Fσ0〉
�σ

6 (iωn) = 1

N

∑

qm

βt2(q)〈Fσ0〉Pσ ϕmσ

iωn − Emσq
〈Fσ0

p Fσ0
l 〉0.

(42)

Here, b(x) = 1/(exp(βx) − 1) is the Bose distribution function, P0ϕ00 =
e−λ2(2B+1) I0(2λ2

√
B(B + 1)), 〈σ z + 1

4 Sz
0〉0 ≈ 5

4β H̃ 2eβµ̃+1
5eβµ̃+4

. Since β H̃ � 1, the nonzero

contribution to �σ
4 (iωn) is proportional to b(ε−σσ )〈σ z + 1

4 Sz
0〉0 ≈ 1

2σ at βµ̃ � 1. Also,

for linked diagrams which are proportional to δpl we have 〈F
σ0

p F
σ0

l 〉0 = m(µ̃)δpl , where

m(µ̃) = 5
8
(5eβµ̃+2)(eβµ̃+1)

(5eβµ̃+4)2
.

To find the final expressions for the diagrams, the value of �σ
4 (iωn) should be multiplied

by G0σ (iωn) and �σ
5 and �σ

6 by G0σ (iωn)
2. Then the self-energy

∑
σ (iωn) is written as∑

σ

(iωn) = 〈Fσ0〉G0σ (iωn)+�σ
4 (iωn)G0σ (iωn)+ (�σ

5 +�σ
6 (iωn))G0σ (iωn)

2. (43)

Using the Larkin equation [19] the total Green function Gσ (iωn,k) can be easily found:

Gσ (iωn,k) =
∑

σ (iωn)

1 − βt (k)
∑

σ (iωn)
. (44)
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Figure 5. Temperature dependences of magnetization 〈σ z + 1
4 Sz

0〉 for n = 0.8 with ξ/W =
0, 0.003, 0.01, 0.03 and 0.04 (curves 1–5, respectively).

In the DE model (ξ = 0) this formula is essentially simplified:

Gσ (iωn,k) = 1

β

〈Fσ0〉 +�σ
4 (iωn)

iωn − ωσk
, (45)

where ωσk = −ε0σ − 1
4δµ−σ + (〈Fσ0〉 +�σ

4 (iωn))t (k)+ �σ
6 (iωn)

β〈Fσ0〉 .
To deduce equation (45) we have used the linear expansion of small parameters. Realizing

in equations (44) and (45) an analytical continuation iωn → ω+ iδ we obtain a retarded Green
function, the poles of which determine the �(k) spectrum of excitations. The imaginary part
Gσ (iωn,k) determines the spectral density being proportional to δ(ω − �(k)) for coherent
excitations.

The spectral density of the incoherent spectrum describing the relaxation processes is
of principal interest. After analytical continuation iωn → ω + iδ using equations (42) one
can evaluate the nonzero imaginary parts of �σ

4 (�(k)) and �σ
6 (�(k)). The corresponding

formulae are given in the appendix (equations (A.5) and (A.6)).
∑′

σ (ω) and
∑′′

σ (ω) correspond
to the real and imaginary parts of the self-energy

∑
σ (ω), respectively. Let us write the

imaginary part Im(Gσ (iωn,k)) of the total Green function as

Im(Gσ (ω + iδ,k)) =
∑′′

σ (ω)(
1 − βt (k)

∑′
σ (ω)

)2 + (
βt (k)

∑′′
σ (ω)

)2
. (46)
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Figure 6. Frequency dependence of spectral density for the up-spin band in the FM phase at
n = 0.8, ξ = 0, T/W = 0.02 and t (q)/W = −0.4, −0.35, −0.3, −0.25, −0.2, −0.1 and
−0.05 (curves 1–7, respectively).

In the case of incoherent excitations the spectral density Rσ (ω,k) = −2β Im(Gσ (ω + iδ,k))
will be different from zero over a certain frequency interval in which the electron density of
state DC(x) also has nonzero value.

In figure 6 the frequency dependences of the spectral density, R↑(ω,k), for the up-spin
band in the FM phase (TC/W = 0.024) are shown at ξ = 0, T/W = 0.02 (µ/W = 0.147)
and n = 0.8. The curves 1–7 display the shift of maximum R↑(ω,k) towards the Fermi
energy ω = −µ with increasing t (q)/W from −0.4 to −0.05, respectively. We have a similar
behaviour of R↑(ω,k) with decreasing T . When this result is compared with APRES spectra
(see figure 2a in [20]), it is apparent that there is qualitative agreement between theory and
experiment. The same result was obtained in the CPA method [21]. After the replacement
t (q) → −t (q) the figure changes symmetrically about ω = −µ. It should be emphasized that
in this theory Rσ (−µ̃,k) = 0.

Figure 7 displays the frequency dependence of the spectral density Rσ (ω, �k) in the
approximation (31) for the effective line at n = 0.8, ξ/W = 0.03 and t (q)/W = 1/3.
Curves 1 and 2 correspond to up- and down-spin bands at low temperature (T/W = 0.005)
and curve 3 to the PM-2 phase. As in figure 6, for the incoherent spectrum of excitations the
spectral density Rσ (ω, �k) in the FM state has a broad maximum. It is seen that very sharp
peaks characteristic of coherent polaron excitation only occur in the PM-2 phase (see the inset
in figure 7). Therefore polarons are involved in the conductivity above the temperature TC,
and increase it. In experiments, the coherent peaks are difficult to observe because of polaron
scattering. Unfortunately, the value ρ(T ) near TC (in the PM phase) does not exceed a few
m� cm, which is inconsistent with the experiment. Seemingly, near the phase transition the
vertex corrections in the Green function begin to play an important role. This problem is very
complicated and demands special consideration.
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Figure 7. Spectral density versus frequency obtained using the approximation (equation (31)) for
effective interaction at ξ = 0.03, t (q)/W = 1/3, n = 0.8 and T/W = 0.005 for up- and down-
spin bands (curves 1 and 2, respectively) and for the PM phase at T/W = 0.0123 (curve 3). Inset:
the same plot near zero frequency on an enlarged scale. The chemical potentials in the FM and PM
phases are equal to 0.0277 and 0.0311, respectively (in units of W ).

(This figure is in colour only in the electronic version)

The expression for the conductivity σ(T ) of the s.c. lattice obtained on the basis of the
above results using the Kubo formula in the bubble approximation [5] has the form

σ(T ) = e2

3aπ h̄N

∑

qσ

�σ (t (q))t (q),

where the �σ(t (q)) function is related to the spectral density by the following differential
equation:

d�σ (t (q))
d(t (q))

= [Rσ (ω,q)]2. (47)

Since the imaginary part of the Green function (equation (46)) is a simple function of the
parameter t (q), the integration of the squared spectral density in equation (47) presents no
problem. Here we are not presenting a sufficiently complicated expression for �σ (t (q)).

In figure 8 the resistivity versus band filling (ρ(n)) in the FM and PM-2 phases (curves 1
and 2, respectively) are shown at T = 0 and ξ = 0. Curve 3 in figure 8 shows the dependence
of ρ(n) in the PM phase calculated by the CPA method [5, 21]. It is seen from figure 8 that the
CPA method gives a minimal ρ(n) value of the order of 1 m� cm. In our case the resistivity
ρ(n) in the PM-2 and FM phases is much smaller near their lower boundaries at n � n0

(n0 is equal to 0.116 and 0.588 for the PM-2 and FM phases, respectively). According to
the experimental data [22] in La1−x Srx MnO3 the residual resistance at x ∼ 0.3 is essentially
smaller than 1 m� cm. At n → 1 the resistivity ρ(n) in the FM phase abruptly increases, as in
the CPA method.
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Figure 8. Resistivity ρ(n) in the DE model for the FM and PM-2 phases (curves 1 and 2,
respectively) at T = 0, h = 0. Curve 3 is obtained using the coherent potential approximation
(CPA) [5].

Figure 9(a) gives the temperature dependence of resistivity at n = 0.8 neglecting electron–
phonon coupling. In the inset of figure 9(a) a comparison of calculated ρ(T ) at W =
1 eV [10], n = 0.8 and 0.6 with the experimental temperature dependence of the resistivity
for La0.7Sr0.3MnO3 film [23] is shown. One can see the qualitative agreement between theory
and experiment. We have also calculated the curve ρ(T ) at n = 0.6, since the value of residual
resistivity ρ0 in this case agrees well with that of experiment [23] for La0.7Sr0.3MnO3 film.
Unlike the CPA method, a sufficiently abrupt growth of resistivity near the phase transition
with increasing T is seen. Figure 9(b) gives the temperature dependences of the imaginary
parts �σ

4 (ω) and �σ
6 (ω) at ω = 0. A sharp increase of some dependences in value near

TC reflects the essential strengthening of scattering processes near the phase transition. In
the PM-2 phase the resistivity is weakly dependent on temperature, and its maximal value
does not exceed several m� cm, as observed in [5]. The authors of [6, 11, 21] pointed out
that this is a characteristic property of systems with dominant DE such as La1−xSrx MnO3.
In La1−xCax MnO3 compounds the polaron dynamics becomes important because of stronger
electron–phonon coupling.

In figure 10 the influence of weak electron–phonon interaction on the ρ(T )-dependence
calculated using the approximation (31) for the effective line at n = 0.8 is shown. Indeed, a
large number of polarons participate in the conductivity and increase it above TC. It is seen that
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Figure 9. In the DE model the ρ(T ) dependences (a) and imaginary parts of�σ6 (ω) and�σ4 (ω) (b)
diagrams at n = 0.8 and ω = 0 (curves 1, 3 and 2, 4 for up- and down-spin band, respectively).
Curves 5 and 6 are the same plots for �σ6 (ω) and �σ4 (ω) in the PM-2 phase, respectively. In the
inset a comparison of experimental (curve 3) for La1−x Srx MnO3 with x = 0.3 [23] and theoretical
at W = 1 eV, n = 0.8 (curve 1) and n = 0.6 (curve 2) resistivities is shown.

the resistivity changes from a ‘metallic’ (dρ/dT > 0) to an ‘insulating’ (dρ/dT < 0) regime
with increasing polaron binding energy in the PM phase. This agrees with the previous results
obtained in [6, 11, 21]. However, the resistivity falls off with increasing polaron binding energy
ξ . The discrepancy between calculated and experimental values of the maximum resistivity is
due to the influence of vertex corrections in current correlators which are ignored in the bubble
approximation. Another reason is that we use the approximation (31) for the effective line in
the limit of strong electron–phonon coupling.

7. Conclusions

We have considered the magnetic, transport and spectral properties of manganites in the
framework of the Holstein DE model. In the case of a narrow-band Hubbard magnet the unitary
transformation is found to build the diagram techniques with the allowance for strong Hund’s
rule coupling (JH � W ). It may be stated that the quantum fluctuations of electron and ion
spins play an important role in the magnetic ordering of manganites. In particular, it is the
fluctuations of spin S = 2 that reduce the Curie temperature by approximately 30%.
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Figure 10. Influence of weak electron–
phonon interaction on ρ(T ) at n = 0.8
and h = 0 for polaron binding energy
ξ/W : 0, 0.003 and 0.005 (curves 1–3,
respectively).

Results are given for the effects of electron–phonon interactions. Unfortunately, the
equation obtained for pole singularities of the Green function is very complex. Using the
approximation having regard to a few polaron bands, the strong influence of electron–phonon
interaction on TC as well as on magnetization was established. This agrees with theoretical
predictions of both dynamic mean-field and coherent potential approximations.

The analysis of the temperature dependence of resistivity in the framework of the
considered model shows that the ρ(T )-dependence rises rapidly at the phase transition from
FM to PM state (as in La1−xSrx MnO3 with optimal Sr content). The spectral density as a
function of T reflects the enforcing of scattering effects near the Curie temperature. For the
pure DE model the minimal residual resistance was shown to be smaller than that obtained in
the CPA theory. This result agrees with that of experiments for some perovskite manganites
and confirms the correct treatment of the electron scattering.

In the double-exchange model the analysis of spectral density shows the shift of maximum
R↑(ω,k) to Fermi energy for wavevectors to be changed from the edge to the centre of the
Brillouin zone. Qualitative agreement was obtained between calculated and experimental
APRES spectra. In the PM phase the temperature dependence of resistivity changes from
a ‘metallic’ (dρ/dT > 0) to an ‘insulating’ (dρ/dT < 0) regime with increasing polaron
binding energy. The increase of conductivity above Tc with increasing temperature can be
caused by the presence of pronounced polaron peaks in the spectral density. However, the
decrease in the peak height of resistivity with increasing polaron binding energy indicates that
additional work is needed to improve the accuracy of the approximation used for effective
electron–phonon interaction.
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Appendix

The annihilation operators are expressed as

c↑ = L9,1 +
√

3

2
L10,2 + 1√

2
L11,3 + 1

2
L12,4

c↓ = 1

2
L9,2 + 1√

2
L10,3 +

√
3

2
L11,4 + L12,5.

(A.1)
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To obtain similar formulae for the electron creation operators the Hermitian conjugate of (A.1)
was performed. Since we used the wavefunctions of model space in which the |ϕ6〉, |ϕ7〉 and
|ϕ8〉 functions of orthogonal add-ins are excluded, the equality c†c + cc† = 1 fails for Fermi
operators. However, this is not important under this consideration because Wick’s theorem is
used directly on Hubbard operators for which the Fermi or Bose origin does not break down.

The operators of electron n and hole p numbers have the form

n̂ = L1,1 + L2,2 + L3,3 + L4,4 + L5,5

p̂ = L9,9 + L10,10 + L11,11 + L12,12.
(A.2)

In this case p + n = 1. The operators of electron nσ and hole pσ numbers with spin σ are
determined as follows:

n̂↑ = L1,1 + 3
4 L2,2 + 1

2 L3,3 + 1
4 L4,4

n̂↓ = 1
4 L2,2 + 1

2 L3,3 + 3
4 L4,4 + L5,5

p̂↑ = L9,9 + 3
4 L10,10 + 1

2 L11,11 + 1
4 L12,12

p̂↓ = 1
4 L9,9 + 1

2 L10,10 + 3
4 L11,11 + L12,12

(A.3)

and the following relations

n̂↑ + n̂↓ = n̂, p̂↑ + p̂↓ = 5
4 (1 − n̂)

n̂↑ − n̂↓ = 2σ z

p̂↑ − p̂↓ = 1
2 Sz

0
(A.4)

take place. The z-projection of the spin operator Sz on the truncated basis of t2g and eg electrons
is expressed as

Sz = 3
2 (L

1,1 − L5,5 + L9,9 − L12,12)+ 3
4 (L

2,2 − L4,4)+ 1
2 (L

10,10 − L11,11).

The imaginary parts of the �σ
4 (ω) and �σ

6 (ω) functions after analytic continuation to the real
axis iωn → ω + iδ are written in the form (see approximation (31) with formulae (42) for
�σ

4 (ω) and �σ
6 (ω)):

Im(�σ
4 (ω)) = −3πσb(ε−σσ )〈σ z + 1

4 Sz〉0

W 〈F−σ0〉2

×
∞∑

m=−∞
�mσ (ω)

P0ϕ00

P−σ ϕm−σ
DC

(
6�mσ (ω)

〈F−σ0〉P−σ ϕm−σW

)
(A.5)

1

β
Im(�σ

6 (ω)) = − 6πm(µ̃)

W 〈Fσ0〉2

∞∑

m=−∞

(
�m−σ (ω)

Pσ ϕmσ

)2

DC

(
6�m−σ (ω)

〈F−σ0〉Pσ ϕmσ

)
, (A.6)

where �mσ (ω) = ω + ε0−σ + mω0.
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